NATIONAL AIR INTELLIGENCE CENTER THE DESIGN OF A COMPOSITE ACOUSTO-OPTIC CELL WITH 175 MHz CENTER FREQUENCY bу Cheng Naiping, Li Shujian, Shao Dingrong 19960715 048 Approved for public release: distribution unlimited #### **HUMAN TRANSLATION** NAIC-ID(RS)T-0123-96 23 May 1996 MICROFICHE NR: 96 C000456 THE DESIGN OF A COMPOSITE ACOUSTO-OPTIC CELL WITH 175 MHz CENTER FREQUENCY By: Cheng Naiping, Li Shujian, Shao Dingrong English pages: 9 Source: Journal of Beijing University of Aeronautics and Astronautics, Vol. 20, Nr. 3, July 1994; pp. 253-258 Country of origin: China Translated by: SCITRAN F33657-84-D-0165 Requester: NAIC/TATA/Capt Joe Romero Approved for public release: distribution unlimited. THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITO-RIAL COMMENT STATEMENTS OR THEORIES ADVO-CATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER. PREPARED BY: TRANSLATION SERVICES NATIONAL AIR INTELLIGENCE CENTER WPAFB, OHIO **NAIC-**ID(RS)T-0123-96 **Date** 23 May 1996 #### GRAPHICS DISCLAIMER All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available. 10 M 32 # THE DESIGN OF A COMPOSITE ACOUSTO-OPTIC CELL WITH 175 MHz CENTER FREQUENCY Cheng Naiping Li Shujian Shao Dingrong ABSTRACT Introduction is made of a design for composite acousto-optic cells with center frequencies of 175 MHz and using PM (PbMoO2) as medium. Transducer bandwidths are calculated when In is used as adhesive layer. In conjunction with that, coating thicknesses are precisely determined. The cell bandwidth in question is 120 MHz. Time bandwidth products reach 1207.5. The requirements of acousto-optic processing are satisfied in a preliminary way. KEY WORDS Acousto-optic devices Design Information processing Bragg cell CLASSIFICATION CODE TN65 #### 1 INTRODUCTION Following along with the rapid development of acousto-optic signal processing technology, there is a requirement for acoustooptic devices to possess time bandwidth products (7B products) which are as large as possible. Transition times τ depend on the dimensions of acousto-optic media and optical system aperture diameter. They cannot be too large. With regard to normal Bragg cells, τ is generally selected as around 10 μ s. What has the most relative potential is increasing device bandwidth B (or Δf). Due to the fact that when acousto-optic devices operate, they generally do not exceed octave bandwidths[1], that is, relative wavelength $\Delta f/fc \leq 0.667$ (fc in this is center frequency), as a result, the key to increasing device bandwidth Af is increasing the device center frequency fc to act as the first step in developing ultra high frequency wave band acousto-optic devices. As far as our developing acousto-optic devices with center frequencies of 175 MHz and bandwidths reaching 120 MHz is concerned, the time bandwidth product can reach 1000. This is able to satsify requirements associated with acousto-optic signal processing in a preliminary way. At the present time, correlator/coil integral device systems developed inside and outside China basically all opt for the use of dual device systems. The obvious drawback of the systems in question are variety, large light losses, and bad stability characterisitcs. In order to make systems capable of conversion to practical use as rapidly as possible, a design is put forward of two transducers glued to the two ends of a crystal, designing composite acousto-optic devices—not only greatly simplifying the systems but also greatly improving system performance. #### 2 GENERAL CONSIDERATIONS Due to the fact that supersonic wave attenuation associated with media and f2 form a direct proportion, when developing ultra high frequency acousto-optic devices, the primary consideration is supersonic attenuation. Data associated with supersonic attenuation coefficients of a number of relevent media as well as the speed of sound V, acoustic impedance Z, and relative acoustic impedance Zo=Z/Zop (Zop is the acoustic impedance associated with LN transducer plates) are set out in Table 1[1]. PM (PbMoO2) is one of the most commonly used acousto-optic media in the visible light and near infrared range. It possesses a very large acousto-optic optimum value. α 0 associated with 36°Y sheared niobium lithate is very small. Using it as a high frequency band piezoelectric layer is no problem at all. The typical thickness of adhesive layers and electrode layers is 1μ m. Indium is selected as the linking layer material. The α 0 associated with silver and gold are both very small. There is no problem using them as electrode layers. Considering that back electodes are constantly in contact with the air, it is very easy for silver to blacken when it is used. It is possible to change to the use of gold. When calculating the thicknesses of various coating layers, option should be made—as much as possible—for the use of thin film material data (Table 1). In conjunction with this, assume the internal resistance of unitary sources, r(illegible) = 1. Table 1 Acoustic Characteristics Associated with Several Types of Important Acousto-Optic Materials | 表 1 几种主要声光材料的声学性质 | | | | | |-------------------|--|------------|--|------------------| | (1)介质(声波方向) | a ₀ (dB/cm • GHz ²) - | - V(μm/μs) | $Z(10^6 \text{kg/m}^2 \cdot \text{s})$ | $Z_o = Z/Z_{op}$ | | 和數船 PM([001]) | 15 | 3 632 | 25. 2 | 0. 75 | |) 化胶锂 LN(36'Y) | 0.15 | 7 300 | 33. 9 | 1. 00 | | In([101]) | 80 000 | 2 250 | 16.4 | 0. 48 | | Ag([111]) | 250 | 3 960 | 41.5 | 1. 22 | | Au([111]) | 200 | 3 400 | 65- 5 | 1. 93 | Key: (1) Medium (Acoustic Wave Direction (2) PbMoO2 (3) Niobium Lithate 3 TRANSDUCER BANDWIDTH CALCULATIONS AND PRECISE DETERMINATIONS OF COATING THICKNESSES The general structure of acousto-optical devices as well as related parameters are as shown in Fig.1. , V, and l, respectively, stand for the density, acoustic speed, and thickness of various layers. With regard to piezoelectric layers, there is also a need to add electromechanical coupling coefficient k and transducer thin plate tweezer shape electrical capacitance Co. Fig.1 General Structure of Acousto-Optical Devices and Related Parameters Key: (1) Back Absorption Layer (2) Electrode Layer (3) Piezoelectric Layer (4) Electrode Layer (5) Linkage Layer (6) Electrode Layer (7) Acousto-Optically Interacting Media The importance of electrode layers 11 and 12 is obvious. The role of linkage layer 13 is to take mechanical vibrations associated with piezoelectric layers and couple them into interacting media forming supersonic waves. The rationale for electrode layer 4 must be because of technical reasons. It makes interacting media surfaces metalized in order to facilitate linkage. As far as the existence of back absorption bodies is concerned—although it is possible to enlarge transducer bandwidth—at the same time, however, it makes useful (that is, entering into interacting media) supersonic energies become smaller. Under general conditions, back absorption bodies are not used at all. Any acousto-optic device is capable in all cases of using the medium composition set out below in order to be characterized: $$Zob-(Zo1,t1)-P(k)-(Zo2,t2)-(Zo3,t3)-(Zo4,t4)-Zom$$ tn is the relative thickness of various coating layers (n=1,2,3,4). Zob, Zom, Zon are the realtive impedances associated with various layers (n=1,2,3,4). During the selection of calculation attempt values associated with t2, t3, t4, considerations are made of the several areas below. - 1) As far as technical considerations are concerned, one first of all wishes t3 to be relatively large in order to facilitate linkage. However, with regard to t2 and t4, they are chosen very small. Moreover, calculation results associated with changing t3 values clearly show that, at this time, the transducer 3dB bandwidth reductions which follow along with increases in t3 are relatively fast. The reason is that the difference between Zo3 = 0.48 and 1 is relatively large. Acoustic match losses associated with this situation are relatively severe. - 2) Making considerations in terms of technology, selecting t4=t2 is the most advantageous. At this time, silver plating operations on LN and PM can be completed at one time. - 3) Due to the fact that indium's V/2=1125 is nearly only half of silver's (V/2=1980), as a result, if one selects t3=t2, then, the actual thickness of indium layers is too thin--not advantageous to linkage. For this reason, when selecting calculation attempt values associated with t2, t3, and t4, the limits set out below will be made: In accordance with data in Table 1, calculations are done of media composition (1.93,t1)-P(0.49)-(0.48,2t2)-(1.22,t2)-0.75 TL-F curves (in these, fo is piezoelectric transducer plate antiresonance frequency). In conjunction with this, in accordance with transducer requirements, precise determinations are made of relative coating thicknesses t1 and t2. Table 2 and Table 3 set out the primary characteristic data associated with TL-F curves. Among these, Fm is peak value frequency, that is, when transducer losses TL reach extremely small values Timin, relative frequencies FL and FH are, respectively, the low end and high end frequencies associated with TL=TLmin+3 dB locations (that is, 3dB bandwidths). Fc=(FL+FH)/2 gives band pass center frequencies. Moreover, ΔF =FH-FL gives 3 dB relative /255 band width. Due to the fact that fo/fc=Fc, from center frequency fc, it is possible to precisely determine the antiresonance frequencies fo which piezoelectric transducer plates should possess. $\Delta f/fc = \Delta F/Fc$ gives relative bandwidths with practical They should correspond to 3dB Bragg bandwidths of devices. uses. From Table 2 data it is possible to see that, when t2 ≤ 0.08, curve forms are very close to when t2 =0.00 (in particular, within 3dB bandwidth ranges). Bandwidth #F is basically invariable. However, after t2 \geq 0.08, curve forms are then clearly distorted. ΔF very rapidly gets small. As a result, t2 = 0.08. From Table 3 data, it is possible to see that, when back electrode layer relative thickness t1 increases, although changes in the magnitudes of AF and curve shapes are very small, the entire curve, however, will rapidly shift toward the low end, thereby making the values of fo/fc increase. The larger fo/fc values become, the higher antiresonance frequency fo associated with peizoelectric transducer plates must become in order to realize the same type of center frequency fc . This requires taking transducer plates and grinding them even thinner. In view of the limitations associated with transducer thinning techniques, it is not desired to have fo/fc values too large. From Table 3 data, selecting t1 = 0.04 is comparatively appropriate. At this time, transducer relative bandwidths are already larger than the octave bandwidth 0.667 required by normal Bragg devices. As a result, it is possible to satisfy requirements. It should be pointed out that, as far as Table 3 is concerned--although it is only results fixed at 0.08-t2 calcualtion results, however, are almost completely the same at different values, that is, a selection of t1 = 0.04 possesses general occurence. Table 2 Primary TL-F Curve Characteristic Data Associated with P(0.49)-(0.48,2t2)-0.75 | £2 | F. | F_{L} | FH | Fe | ΔF | fo/fe | $\Delta f/f$ | |-------|-------|---------|--------|-------|--------|-------|--------------| | 0.00 | 0. 89 | 0. 53 | 1. 21 | 0.87 | 0.68 | 1. 15 | 0. 78 | | 0. 08 | 0.92 | 0. 535 | 1. 205 | 0- 87 | 0. 67 | 1. 15 | 0. 77 | | 0. 12 | 0. 94 | 0. 59 | 1.12 | 0. 85 | 0. 53 | 1. 18 | 0. 625 | | 0.16 | 0. 90 | 0. 675 | 1.03 | 0.85 | 0. 355 | 1 18 | 0. 42 | Table 3 Primary TL-F Curve Characteristic Data Associated with (1.93,t1)-P(0.49)-(0.48,2t2)-0.75 | ŧ ₁ | F= | FL | FH | Fc | ΔF | fo/fe | $\Delta f/f_c$ | |----------------|-------|--------|--------|-------|------------|-------|----------------| | 0.00 | 0. 92 | 0. 535 | 1. 205 | 0.87 | 0. 67 | 1. 15 | 0.77 | | 0.04 | 0. 83 | 0. 485 | 1.12 | 0.80 | 0. 635 | 1. 25 | 0. 794 | | 0. 08 | 0.77 | 0.455 | 1.045 | 0. 75 | 0. 59 | 1. 33 | 0. 786 | Synthesizing the analysis above, precise determinations of various layer thickness parameters are as follows: (1.93,0.04)-P(0.49)-(1.22,0.08)-(0.48,0.16)-(1.22,0.08)-0.75 With regard to the selections above, there are: fo/fc = 0.794. The devices associated with designs in this article operate at locations where center frequencies are fc = 175MHz. It is then possible to obtain fo=1.25fc=218.75(MHz) ΔfT=0.794fc=138.95(MHz) (transducer bandwidth) Various layer thicknesses: $1=V/2/fo=3650/218.75=16.7(\mu m)$ $11=V/2/foxt1=1700/218.75x0.04=0.31(\mu m)$ $12=14==1980/218.75\times0.08=0.72(\mu m)$ $13=V3/2/foxt3=1125/218.75x0.16=0.82(\mu m)$ In these, l is piezoelectric layer thickness. 11, 12, 14 are electrode layer thicknesses. 13 is adhesive layer thickness. In technical terms, these kind of coating thicknesses are relatively easy to realize. Due to the fact that, when designing various coatings, the assumed unitized internal resistance rs=1--in theoretical terms-during operations, wide band acousto-optical devices are capable of not adding matching networks. Moreover, in terms of design, electrode area A is made so that $1/(\omega \circ C_0)=Rs$. Generally, electric source internal resistance $Rs=50\Omega$. As a result, $1/(\omega \circ C_0)=50\Omega$. From flat plate electrical capacitance formulae, one obtains a unit area capacitance of: Cunit(pF/mm2)=8.85 $$\epsilon$$ r/(1(μ m)) In this, I is transducer plate thickness calculated above corresponding to fo. &r is the relative dielectric constant associated with LN. Because of this, unit area capacitance is: /256 $1/(\omega \circ Cunit) = 1/(2\pi f \circ Cunit)$ Then, $A=1/(\epsilon oC)/50$ With regard to device designs in this article, when \blacksquare r associated with 36°Y shear LN =38.6, one solves to get l=16.7 μ m. Upper electrode area A=0.712mm2. #### 4 ACTUAL DESIGNS AND BRAGG BANDWIDTHS Opting for the use of planar first order supersonic tracking structures (Ne=4), in order to increase Bragg bandwidth ΔfB , when fc=175MHz and $\lambda o=0.6328\mu m$, PM internal medium optical wavelength $\lambda=0.2723\mu m$. The speed of sound V=3632m/s. As a result, characteristic wavelengths associated with center frequency locations are: $\mathcal{L}_{0}^{(r)} = \bigwedge^{2} \lambda = (V/fc) 2/\lambda = 1.582 (mm)$ Fig. 2 Planar Structure First Order Supersonic Tracking Structure (Ne=4) Key: (1) Electrode Line (2) Upper Electrode (3) Base Electrode Then, from the optimum designs of Table 4: various transducer plate center distances S=1.167 1 =1.85(mm) various transducer plate lengths Le=0.9S=1.66(mm) overall interaction length L=4S=7.40(mm) 3dB Bragg bandwidth $\Delta fB=0.69fc=120.75(MHz)$ Because ρ = 1 is selected, option is, therefore, made for the use of anitresonance drive methods. Various transducer plates act as series electrical connections. Polarization directions are more or less the same as LN. | N, | F_1+F_2 | $1/F_1F_2$ | ① 调整角度 8 | · 设计参数S | Ľ | ΔF | |----|-----------|------------|-----------------|------------|-------------|-------| | 4 | 2 | 1.167 | 2θ€ | 1. 167L(e) | 4. 668L(c) | 1. 22 | | 6 | 2 | 1.124 | 2€. | 1. 124L(e) | 6. 774L(e) | 1. 02 | | 8 | 2 | 1.097 | 2θ _c | 1. 097L(e) | 8. 776L(c) | 0. 88 | | 10 | 2 | 1.080 | 2θ€ | 1. 080Z(e) | 10. 80L(e) | 0. 80 | | 12 | 2 | 1.068 | 2θε | 1. 068L(e) | 12. 816L(c) | 0. 74 | \mathfrak{F}_1 注: $F_1+F_2=2$:r=0.9: $\rho=1$ Table 4 Planar Structure First Order Supersonic Tracking Optimum Designs Key: (1) Adjustment Angle (2) Design Parameter (3) Note /257 Because, when single plate structures are changed into series connected four plate structures, it is equivalent to four parallel connected plates changed into four series connections, as a result, transducer capacitance amounts are reduced 16 fold. In order to maintain $1/(\omega o c)=50\Omega$, it should make transducer overall area increase 16 fold. Each transducer plate area increases 4 fold. At this time, each base electrode area Ae=4A=0.172x4=2.848mm2. As a result, the width of each base electrode He=Ae/Le=2.848/1.66=1.72mm. The dimensions of this type of electrode are easily manufactured. Supersonic transition time periods associated with designs in this article are: $\tau=10\mu$ s, that is, PM optical window length is: D= $V\tau=3.632\times10=36.32$ mm. Then, acousto-optic device time period bandwidths are: B $\tau=120.75\times10=1207.5$. Processing gain is Gp= $10\log B\tau=31dB$. #### 5 CONCLUDING REMARKS Due to the fact that it is very difficult to obtain large pieces of crystal, as a result, dimensions of devices worked are somewhat smaller than the designs. Actual technological indices and design indices show certain differences in comparisons. In actuality, the optical window lengths are only 27mm. Supersonic transition time periods are $7.4\mu s$. Transducer back electrode dimensions are LexHe=2mmx2mm. The center distance between two adjacent transducer plates is S=3mm. In this way, r=Le/s=2/3=0.667. Ideal requirements have not yet been reached. A certain influence is produced on sound wave interference, directly influencing Bragg bandwidths associated with devices. Actual measured device bandwidth (3dB) is 72 MHz. Time bandwidth products $\tau \Delta f=532.8$; processing gain Gp=27.3 dB. Due to the fact that the relationship between signal to noise ration SNR associated with correlation outputs and signal to noise ration SNR1 associated with reception signals is $SNR=\tau\Delta f\equiv SNR1$, SNR which is associated with correlation output and obtained by calculations in accordance with actual parameters ($\tau\equiv f=532.8$)—although it does not attain ideal values demanded by designs—still obtains, however, obvious improvements. This is what present SAW devices have no way to achieve. #### REFERENCES - 1 徐介平, 声光器件的原理、设计和应用, 北京: 科学出片社, 1982 - 2 Caulfield H J. The special issue on optical computing. Proc IEEE. 1984. 72(7):755~756 - 3 Vanderlugt Anthony. Special section on acousto-optic signal processing. Proc IEEE. 1981. 69 (1):3~5 - 4 Chang I C. Lee S. Efficient wideband acousto-optic Bragg cells. Proc IEEE Ultrasonics Symposium. 1983. 427 - 5 程乃平, 声光相关在信号处理中的应用,中国航空学会电子专业委员会第四届年会论文集, 1992 - 6 Xu J P. The optimum design of AO devices using the first—order beam steering. Proc IEEE Ultrasonic Symposium. 1983, 427 - 7 栾佳冬. 压电换能器和换能器阵, 北京: 北京大学出版社, 1990 #### DISTRIBUTION LIST ### DISTRIBUTION DIRECT TO RECIPIENT | ORGANI | ZATION | MICROFICHE | |--------|----------------------------|------------| | | | | | BO85 D | IA/RTS-2FI | 1 | | | ALLOC509 BALLISTIC RES LAB | 1 | | | T LABS/AVEADCOM | 1 | | C513 A | | 1 | | | /RADCOM/TSARCOM | 1 | | C539 T | | 1 | | Q592 F | STC | 4 | | | SIC REDSTONE | 1 | | 0008 N | | 1 | | 0043 A | FMIC-IS | 1 | | E404 A | EDC/DOF | 1 | | E410 A | FDTC/IN | 1 | | E429 S | O/IND | 1 | | | DE/ISA/DDI | 1 | | | FIT/LDE | 1 | | PO90 N | | 1 | Microfiche Nbr: FTD96C000456 NAIC-ID(RS)T-0123-96